

Robotik I: Einführung in die Robotik Bahnsteuerung

Tamim Asfour, Rüdiger Dillmann

KIT-Fakultät für Informatik, Institut für Anthropomatik und Robotik (IAR) Hochperformante Humanoide Technologien (H²T)

Inhalt

- Grundlagen der Bahnsteuerung
- Programmierung der Schlüsselpunkte
- Interpolationsarten
- Approximierte Bahnsteuerung

Grundlagen der Bahnsteuerung: Trajektorie

Bewegungen eines Roboters werden aufgefasst als

- Zustandsänderungen
 - über der Zeit
 - relativ zu einem stationären Koordinatensystem (kartesischer Raum, Gelenkwinkelraum)
- mit Einschränkungen durch
 - Zwangsbedingungen
 - Gütekriterien
 - Neben- und Randbedingungen

Grundlagen der Bahnsteuerung: Problem

Gegeben

- S_{Start} :
 Zustand zum Startzeitpunkt
- S_{Ziel} :
 Zustand zum Zielzeitpunkt

Gesucht

 S_i :
Zwischenzustände (Stützpunkte),
damit die Trajektorie "glatt" und
stetig wird.

Grundlagen der Bahnsteuerung: Beispiel

Beispiel für ein Gelenk

Anfangsbedingungen

$$q(t_0) = 15^{\circ}$$

$$\dot{q}(t_0) = 0 \frac{15^{\circ}}{sec_{\circ}}$$

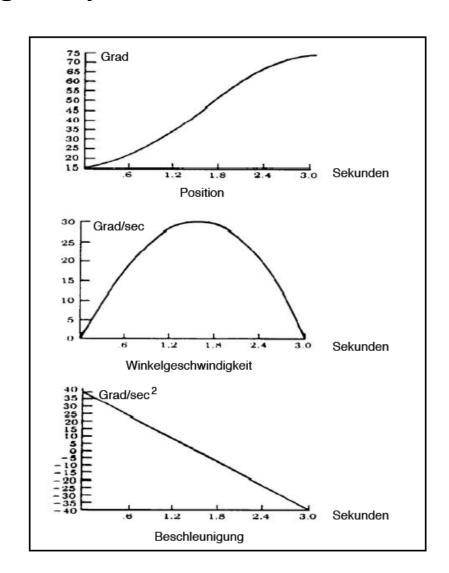
$$\ddot{q}(t_0) = 40 \frac{15^{\circ}}{sec^2}$$

Endbedingungen

$$q(t_e) = 75^{\circ}$$

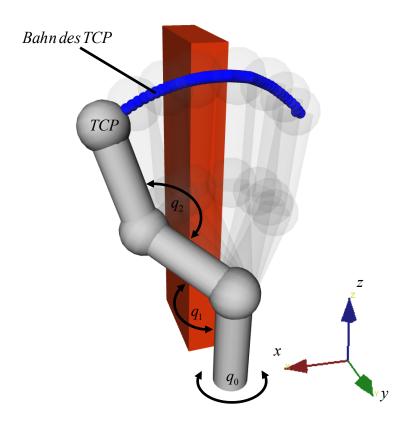
$$\dot{q}(t_e) = 0 \frac{1}{sec}$$

$$\ddot{q}(t_e) = -40 \frac{1}{sec^2}$$

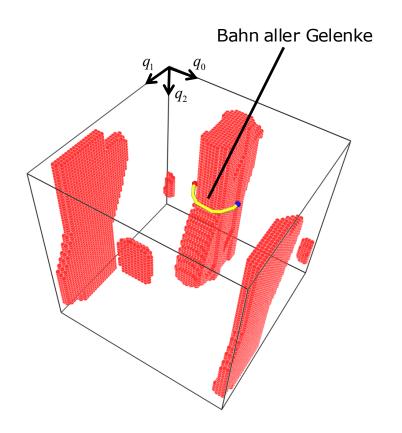


Kartesischer Raum und Gelenkwinkelraum

Darstellung der Zustände



Kartesischen Raum



Gelenkwinkelraum

Grundlagen der Bahnsteuerung

- Zustände können dargestellt werden im
 - lacktriangle Gelenkwinkelraum (Konfigurationsraum): \mathbb{R}^n
 - Kartesischen Raum (Arbeitsraum): \mathbb{R}^3 , SO(3)
- Bahnsteuerung im Gelenkwinkelraum ist näher an der Ansteuerung der Teilsysteme des Roboter (Gelenke, Sensorik)
- Bahnsteuerung im Kartesischen Raum ist n\u00e4her an der zu l\u00f6senden Aufgabe
 - Bei Steuerung im Kartesischen Raum ist das Lösen der inverse Kinematik nötig

Grundlagen der Bahnsteuerung: Interpolation

Interpolation der Weltkoordinaten

Interpolation der Gelenkwinkel

Bahnsteuerung im Gelenkwinkelraum

- Bahnsteuerung als Funktion der Gelenkwinkelzustände
 - Verlauf der punktweise in Gelenkwinkel spezifizierten Bahn muss im kartesischen Raum nicht notwendigerweise definiert sein
- Abfahren dieser punktweise spezifizierten Trajektorien
 - Asynchron: Steuerung der Achsen unabhängig voneinander
 - Anwendung: Punktschweißen, Handhabungsaufgaben
 - Synchron: achsinterpolierte Steuerung
 - Bewegung aller Achsen beginnt und endet zum gleichen Zeitpunkt
 - Leitachse
 - Anwendung: Bahnschweißen, Lackieren, Montieren

Kartesischer Raum (Continuous Path)

- Angabe der Trajektorie erfolgt als Funktion der Zustände des Roboters
 - z.B. mit Beschreibungsvektor des TCPPosition, Geschwindigkeit, Beschleunigung
- Endeffektor folgt in Lage und Orientierung einer definierten Bahn
- Bahntypen
 - lineare Bahnen
 - Polynombahnen
 - Splines

Grundlagen der Bahnsteuerung

Kartesischer Raum

- + Bahn einfacher zu formulieren
- + Interpolation ist einfacher

- Inverse Kinematik ist für jeden Trajektorienpunkt zu lösen
- Geplante Trajektorie nicht immer ausführbar

Gelenkwinkelraum

- + Ansteuerung der Gelenke ist einfacher
- + Trajektorie ist eindeutig und berücksichtigt die Gelenkwinkelgrenzen
- Interpolation für mehrere Gelenke
- Formulierung der Trajektorie umständlicher

Inhalt

- Grundlagen der Bahnsteuerung
- Programmierung der Schlüsselpunkte
- Interpolationsarten
- Approximierte Bahnsteuerung

Programmierung der Schlüsselpunkte: Teach-In (1)

Direkte Programmierung: Teach-In

- Anfahren markanter Punkte der Bahn mit manueller Steuerung
 - Teach Box, Teach Panel, weitere: Spacemouse, Teach-Kugel
- Funktionalität einer Teach Box:
 - Einzelbewegung der Gelenke
 - Bewegung des Effektors in 6 Freiheitsgraden
 - Speichern / Löschen von Anfahrpunkten
 - Eingabe von Geschwindigkeiten
 - Eingabe von Befehlen zur Bedienung des Greifers
 - Starten / Stoppen ganzer Programme

Programmierung der Schlüsselpunkte: Teach-In (2)

Direkte Programmierung: Vorgehen beim Teach-In

- Anfahren markanter Schlüsselpunkte der Bahn
- Speichern der Gelenkwerte
- Ergänzung der gespeicherten Werte um Parameter wie Geschwindigkeit, Beschleunigung usw.
- Anwendung:
 - in der Fertigungsindustrie (Punktschweißen, Nieten)
 - Handhabungsaufgaben (Pakete vom Fließband nehmen)

Programmierung der Schlüsselpunkte: Playback (1)

Direkte Programmierung: Playback

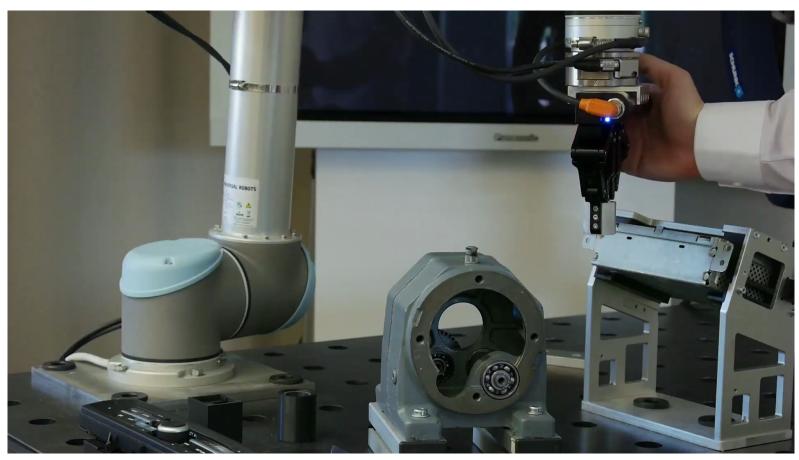
- Roboter im Zero-Force-Control Modus
 - Roboter kann durch den Bediener bewegt werden
- Abfahren der gewünschten Bahn
- Speichern der Gelenkwerte:
 - automatisch (definierte Abtastfrequenz)
 - oder manuell (durch Tastendruck)
- Anwendung:
 - mathematisch schwer beschreibbare Bewegungsabläufe
 - Integration der handwerklichen Erfahrung
 - Typische Einsatzbereiche sind: Lackieren oder Kleben

Programmierung der Schlüsselpunkte: Playback (2)

Direkte Programmierung: Playback

Programmierung der Schlüsselpunkte: Playback (3)

Direkte Programmierung: Playback



http://www.artiminds.com/

Programmierung der Schlüsselpunkte: Playback (4)

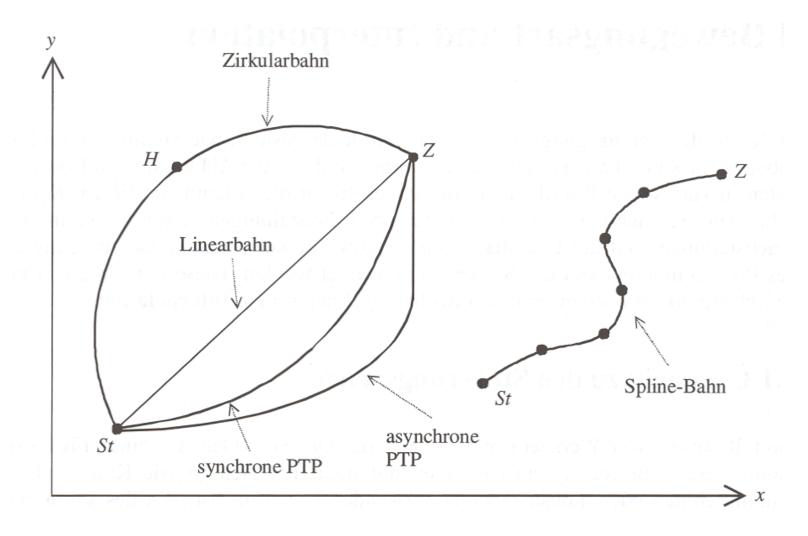
Direkte Programmierung: Vor/Nachteile Playback

- ✓ Schnell für komplexe Bahnen
- ✓ Intuitiv
- schwere Roboter schwierig zu bewegen
- wenig Platz in engen Fertigungszellen für Bediener
 - dadurch Sicherheitsrisiko
- schlechte Korrekturmöglichkeiten
- Optimierung und Kontrolle durch Interpolationsmethoden schwierig:
 - Suboptimale Bahnen

Inhalt

- Grundlagen der Bahnsteuerung
- Programmierung der Schlüsselpunkte
- Interpolationsarten
 - Punkt-zu-Punkt (PTP)
 - Linear- und Zirkularinterpolation
 - Splineinterpolation
- Approximierte Bahnsteuerung

Interpolationsarten: Überblick



Punkt-zu-Punkt-Steuerung (PTP) (1)

- Roboter führt Punkt-zu-Punkt-Bewegung aus
 - PTP: Point-To-Point
- Vorteile:
 - Die Berechnung der Gelenkwinkeltrajektorie ist einfach
 - Keine Probleme mit Singularitäten
- Sequenz von Gelenkwinkelvektoren

$$\boldsymbol{q}(t_j) = \left(q_1(t_j), q_2(t_j), \dots, q_n(t_j)\right)^T$$

mit $q_i(t_j)$: Winkel des Gelenks i zum Zeitpunkt t_j mit j=0,...,k

Punkt-zu-Punkt-Steuerung (PTP) (2)

Randbedingungen

Start- und Zielzustand sind bekannt

z.B. Geschwindigkeit zu Beginn und am Ende sind Null

Der Gelenkwinkelbereich sowie Geschwindigkeiten und Beschleunigungen sind begrenzt (z.B. schnelles Beschleunigen, langsames Abbremsen)

$$\mathbf{q}(t_{Start}) = \mathbf{q}_{Start}$$
 $\mathbf{q}(t_{Ziel}) = \mathbf{q}_{Ziel}$
 $\dot{\mathbf{q}}(t_{Start}) = 0$
 $\dot{\mathbf{q}}(t_{Ziel}) = 0$

$$q_{min} < q(t_j) < q_{max}$$

 $\dot{q}(t_j) < \dot{q}_{max}$
 $\ddot{q}(t_j) < \ddot{q}_{max}$

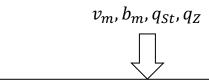
Punkt-zu-Punkt-Steuerung (PTP) (3)

Ablauf der Steuerung

- lacksquare Fahrzeit t_e
- lacksquare Beschleunigungszeit t_b
- lacksquare Beginn der Bremszeit t_v

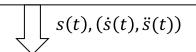
$$s(t_e) = s_e = |q_z - q_{st}|$$

 $s(0) = \dot{s}(0) = v(0) = 0$
 $\dot{s}(t_e) = v(t_e) = 0$



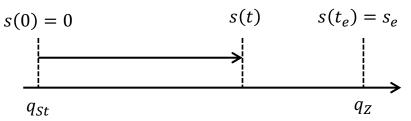
Berechnung der zu fahrenden Strecke bzw. Winkelstrecke

Modifikation der Eingaben v_m , b_m Berechnung von t_e , t_b , t_v Interpolation: Berechnung der Zwischenwerte



Ermittlung der Gelenksollwerte

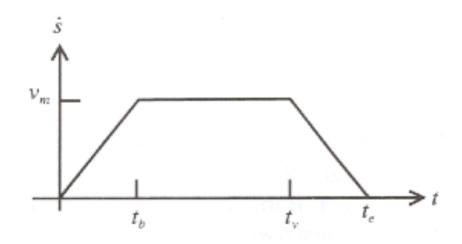
$$q_S(t), (\dot{q}_S(t), \ddot{q}_S(t))$$



 \rightarrow q in rad bzw. m

Interpolation für PTP mit Rampenprofil (1)

- lacktriangle Einfache Art zur Berechnung der Bahnparameter s(t)
- Sprungförmige Aufschaltung der Beschleunigung (ruckartig)
- Kann zu Eigenschwingungen von mechanischen Teilen führen



Interpolation für PTP mit Rampenprofil (2)

Phase der Beschleunigung

$$t_b = \frac{v_m}{b_m}$$

$$\ddot{s}(t) = b_m \quad 0 \le t \le t_b$$

$$\dot{s}(t) = b_m t$$

$$s(t) = \frac{1}{2}b_m t^2$$

Phase der gleichmäßigen Fahrt

$$\ddot{s}(t) = 0 t_b \le t \le t_v
\dot{s}(t) = v_m
s(t) = v_m t - \frac{1}{2} b_m t_b^2 = v_m t - \frac{1}{2} \frac{v_m^2}{b_m}$$

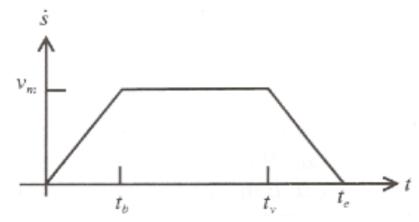
Interpolation für PTP mit Rampenprofil (3)

Phase des Bremsvorganges

$$\ddot{s}(t) = -b_m \quad t_v \le t \le t_e
\dot{s}(t) = v_m - b_m(t - t_v)
s(t) = \frac{1}{2}b_m t_b^2 + v_m(t - t_b) - \frac{1}{2}b_m(t - t_v)^2$$

Berechnung der Fahrtzeit

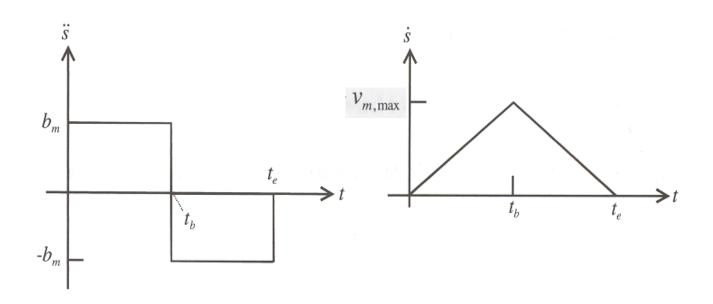
$$t_e = \frac{s_e}{v_m} + t_b = \frac{s_e}{v_m} + \frac{v_m}{b_m}$$



Zeitoptimale Bahn

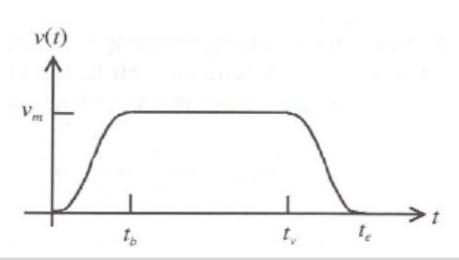
- lacksquare Falls v_m zu groß in Bezug auf Beschleunigung und Bahnlänge
 - Bestimmung einer zeitoptimalen Bahn nach

$$s_e = t_b \cdot v_{m,max} = \frac{v_{m,max}^2}{b_m} \rightarrow v_{m,max} = \sqrt{b_m s_e}$$



Interpolation für PTP mit Sinoidenprofil (1)

- Weichere Bewegung durch Verwendung einer sinusförmigen Zeitfunktion
- Längere Beschleunigungs- und Bremsphase als beim Rampenprofil
- Roboter wird weniger beansprucht
- Bestimmung der Kurvenparameter für die Phase
 - Beschleunigung
 - Gleichförmige Bewegung
 - Bremsvorgang



Interpolation für PTP mit Sinoidenprofil (2)

Phase der Beschleunigung

$$\ddot{s}(t) = b_m \sin^2\left(\frac{\pi}{t_b}t\right) \quad 0 \le t \le t_b$$

$$\dot{s}(t) = b_m \left(\frac{1}{2}t - \frac{t_b}{4\pi}\sin\left(\frac{2\pi}{t_b}t\right)\right)$$

$$s(t) = b_m \left(\frac{1}{4}t^2 + \frac{t_b^2}{8\pi^2}\left(\cos\left(\frac{2\pi}{t_b}t\right) - 1\right)\right)$$

- Aus $\dot{s}(t_b) = b_m \frac{1}{2} t_b = v_m$ folgt $t_b = \frac{2v_m}{b_m}$
- Phase der gleichmäßigen Fahrt

$$\ddot{s}(t) = 0 \quad t_b \le t \le t_v$$

$$\dot{s}(t) = v_m$$

$$s(t) = v_m(t - \frac{1}{2}t_b)$$

Interpolation für PTP mit Sinoidenprofil (3)

Phase des Bremsvorganges

$$\dot{s}(t) = v_m - \int_{t-t_v}^t b(\tau - t_v) d\tau = v_m - b_m \left(\frac{1}{2}(t - t_v) - \frac{t_b}{4\pi} \sin\left(\frac{2\pi}{t_b}(t - t_v)\right)\right) \quad t_v \le t \le t_e$$

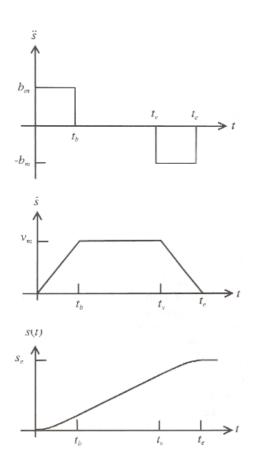
$$s(t) = s(t_v) + \int_{t-t_v}^t \dot{s}(\tau - t_v) d\tau = \frac{b_m}{2} \left(t_e(t + t_b) - \frac{t^2 + t_e^2 + 2t_b^2}{2} + \frac{t_b^2}{4\pi} \left(1 - \cos\left(\frac{2\pi}{t_b}(t - t_v)\right)\right)\right)$$

Berechnung der Fahrtzeit

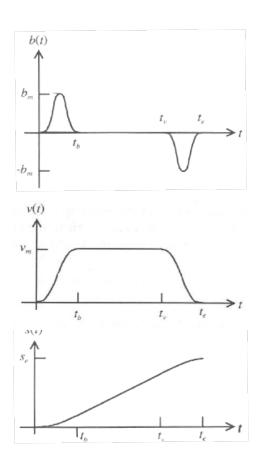
$$t_e = \frac{s_e}{v_m} + t_b = \frac{s_e}{v_m} + \frac{2v_m}{b_m}$$

Interpolationsarten: Rahmen- vs. Sinoidenprofil

Rampenprofil



Sinoidenprofil



Synchrone PTP-Bahnen (1)

- Vorgehen bei synchronen PTP-Bahnen
 - Bestimme f\u00fcr jedes Gelenk i die PTP-Parameter (analog zur asynchronen PTP)
 - $S_{e,i}$
 - $leed v_{m,i}$
 - lacksquare $b_{m,i}$
 - $\blacksquare t_{e,i}$ (Fahrzeit)
 - Bestimme $t_e = t_{e,max} = \max(t_{e,i})$
 - Achse mit max. Fahrzeit ist Leitachse
 - Setze $t_{e,i} = t_e$ für alle Gelenke

Synchrone PTP-Bahnen (2)

Bestimme die neuen maximalen Geschwindigkeiten für alle Gelenke

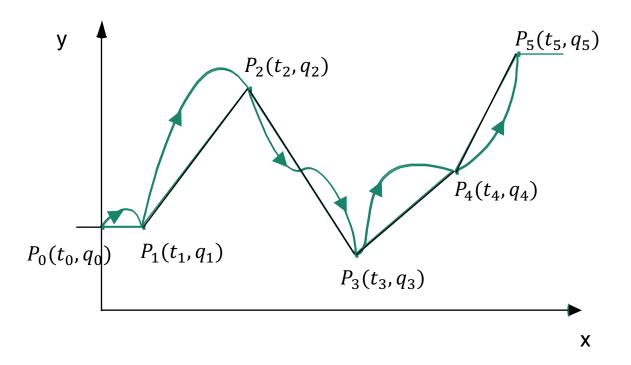
- Umformung Fahrzeit und Berechnung der neuen Geschwindigkeiten
 - Rampenprofil:

$$t_e = \frac{s_{e,i}}{v_{m,i}} + \frac{v_{m,i}}{b_{m,i}} \rightarrow v_{m,i}^2 = v_{m,i}b_{m,i}t_e + s_{e,i}b_{m,i}$$

Analoge Berechnung für Sinoidenbahn:

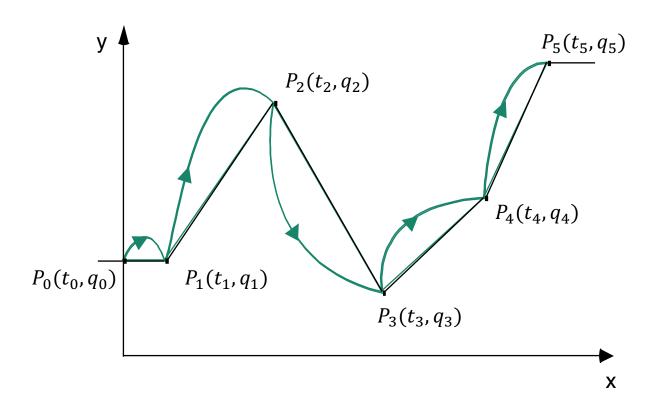
$$v_{m,i} = \frac{b_{m,i}t_e}{2} - \sqrt{\frac{b_{m,i}^2 t_e^2}{4} - s_{e,i}b_{m,i}}$$
$$v_{m,i} = \frac{b_{m,i}t_e}{4} - \sqrt{\frac{b_{m,i}^2 t_e^2 - 8s_{e,i}b_{m,i}}{16}}$$

Asynchrone PTP-Bahnen



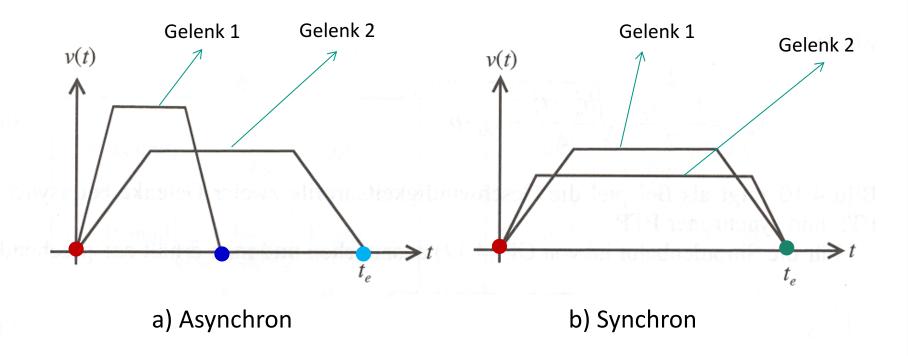
- Jedes Gelenk wird sofort mit der maximalen Beschleunigung angesteuert.
- Jede Gelenkbewegung endet unabhängig von den anderen.

Synchrone PTP-Bahnen



Alle Gelenke beginnen und beenden ihre Bewegungen gemeinsam (synchron).

Vergleich: Asynchrone und synchrone PTP-Bahnen



Vollsynchrone PTP-Bahnen

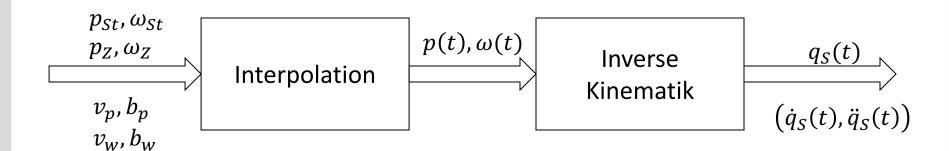
- Zusätzliche Berücksichtigung der Beschleunigungs- und Bremszeit
- Bessere Annäherung der Start- und Zielpunkte im Kartesischen Raum
- lacksquare Bestimmung Leitachse mit t_e und $t_b
 ightarrow t_v = t_e t_b$
- Bestimmung der Geschwindigkeit und Beschleunigung der anderen Achse mit

$$v_{m,i} = \frac{s_{e,i}}{t_v}$$
$$b_{m,i} = \frac{v_{m,i}}{t_h}$$

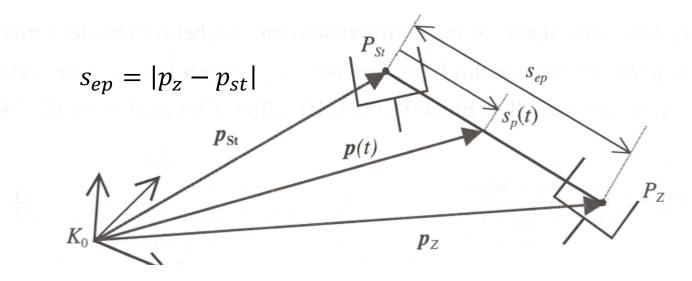
Nachteil: Beschleunigung jeder Achse wird vorgegeben

Steuerung im Kartesischem Raum

- Continuous Path (CP)
- Endeffektor folgt in Lage und Orientierung einer definierten Bahn



Linearinterpolation (1)



$$p(t) = p_{St} + s_p(t) \cdot \frac{(p_z - p_{St})}{S_{ep}}$$

Berechnung von $s_p(t)$ mit Rampen- oder Sinoidenprofil

$$s_p(0) = \dot{s}_p(0) = v_p(0) = 0, \dot{s}_p(t_e) = v_p(t_e) = 0$$

 $v_m = v_p, b_m = b_p, t_e = t_{ep}, t_b = t_{bp}, t_v = t_{vp}, s_e = s_{ep}, s = s_p$

Linearinterpolation (2)

• Orientierung in Eulerwinkel: $\boldsymbol{\omega} = (\alpha, \beta, \gamma)^T$

$$s_{e\omega} = |\boldsymbol{\omega}_Z - \boldsymbol{\omega}_{St}| = \sqrt{(\alpha_Z - \alpha_{St})^2 + (\beta_Z - \beta_{St})^2 + (\gamma_Z - \gamma_{St})^2}$$

Berechnung von $s_{\omega}(t)$ mit Rampen- oder Sinoidenprofil:

$$v_m = v_\omega$$
, $b_m = b_\omega$, $t_e = t_{e\omega}$, $t_b = t_{b\omega}$, $t_v = t_{v\omega}$, $s_e = s_{e\omega}$, $v_m = v_\omega$, $s = s_\omega$

• Angleich der Fahrzeiten t_{ep} (Position) und $t_e\omega$ (Orientierung)

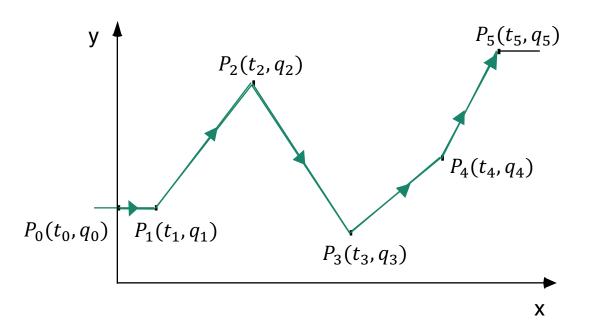
$$t_e = \max(t_{ep}, t_{e\omega})$$

Analog zur Anpassung der Geschwindigkeiten bei synchronen PTP

■ Falls
$$t_e = t_{ep}$$
: $v_\omega = \frac{b_\omega t_e}{2} - \sqrt{\frac{b_\omega^2 t_e^2}{4} - s_{e\omega} b_\omega}$

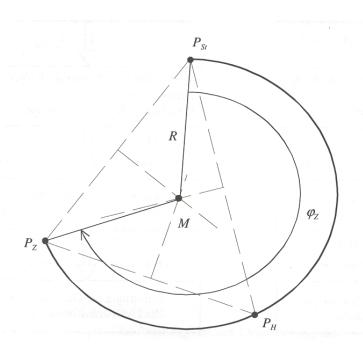
■ Falls
$$t_e = t_e\omega$$
: $v_p = \frac{b_p t_e}{2} - \sqrt{\frac{b_p^2 t_e^2}{4} - s_{ep}b_p}$

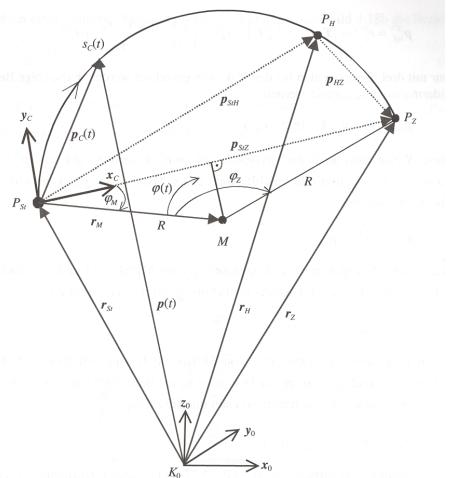
CP linear



Die Robotersteuerung interpoliert die Bahn zwischen je 2 Teiltrajektorien.

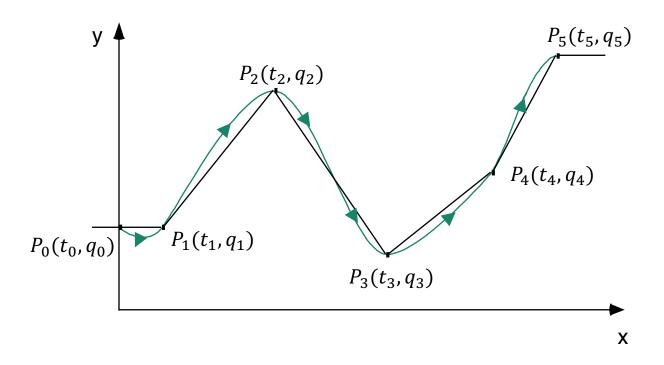
Zirkularinterpolation





Hilfspunkt P_H wird benötigt Bestimme Mittelpunkt M, Radius R und φ_Z

Segmentweise Bahninterpolation



- Die Endbedingungen der Teiltrajektorie j-1 (Richtung, Geschwindigkeit, Beschleunigung) und die Anfangsbedingungen der Teiltrajektorie j werden aneinander angeglichen
- Teiltrajektorien werden separat beschrieben (Bsp: Splines)

Beispiel: Kubische Splines (1)

Gegeben

Polynom:

$$f(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 (a_0, a_1, a_2, a_3 \in \mathbb{R}) (1)$$

Start und Ziel:

$$S_{Start}, S_{Ziel}$$
 (2)

Ansatz

$$\dot{f}(t) = a_1 + 2a_2t + 3a_3t^2 \tag{3}$$

$$\ddot{f}(t) = 2a_2 + 6a_3t \tag{4}$$

Aus (1) und (2) folgt

$$f(t_{Start}) = f(0) = a_0 = S_{Start}$$
(5)

$$f(t_{Ziel}) = a_0 + a_1 t_{Ziel} + a_2 t_{Ziel}^2 + a_3 t_{Ziel}^3 = S_{Ziel}$$
 (6)

Beispiel: Kubische Splines (2)

• Aus Randbedingungen $\dot{f}(t_{Start}) = \dot{f}(t_{Ziel}) = 0$ und (3) folgt:

$$\dot{f}(t_{Start}) = \dot{f}(0) = a_1 = v_{Start} \tag{7}$$

- $\dot{f}(t_{Ziel}) = a_1 + 2a_2t_{Ziel} + 3a_3t_{Ziel}^2 = v_{Ziel}$ (8)
- Aus (7),(8) folgt:

$$a_2 = \frac{v_{Ziel} - v_{Start}}{2t_{Ziel}} - \frac{3}{2}a_3t_{Ziel}$$
 (9)

Aus (5), (6), (7), (9) folgt:

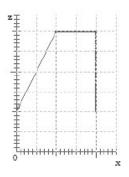
$$a_3 = \frac{2(S_{Start} - S_{Ziel})}{t_{Ziel}^3} + \frac{(v_{Start} - v_{Ziel})}{t_{Ziel}^2}$$
 (10)

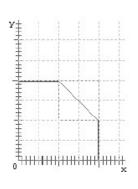
Aus (9), (10) folgt:

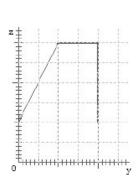
$$a_2 = \frac{3(S_{Ziel} - S_{Start})}{t_{Ziel}^2} - \frac{(v_{Ziel} + 2v_{Start})}{t_{Ziel}}$$

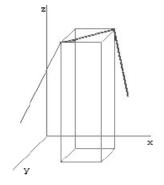
Beispiel: Splines

Bahn (4 Stützpunkte)

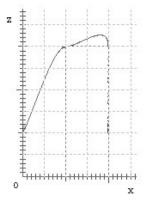


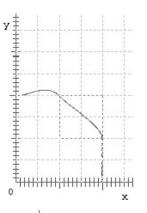


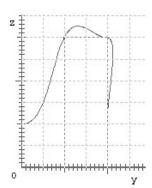


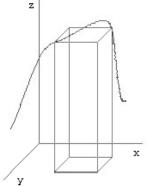


Splineinterpolation









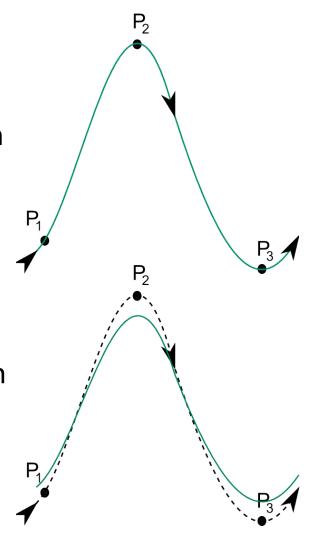
Inhalt

- Grundlagen der Bahnsteuerung
- Programmierung der Schlüsselpunkte
- Interpolationsarten
- Approximierte Bahnsteuerung
 - Bernsteinpolynome

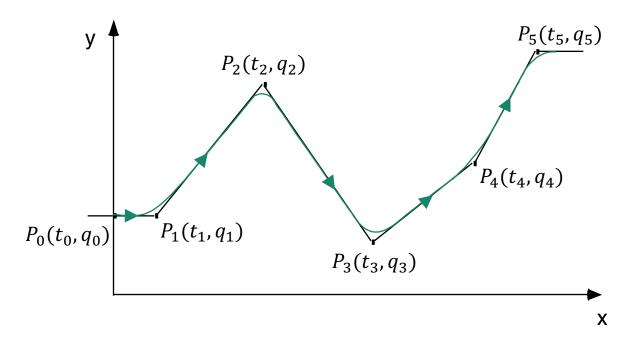
Approximierte Bahnsteuerung: Definition

- Bahninterpolation
 - Die ausgeführte Bahn verläuft durch alle Stützpunkte der Trajektorie

- Bahnapproximation
 - Die Kontrollpunkte beeinflussen den Bahnverlauf und werden approximiert

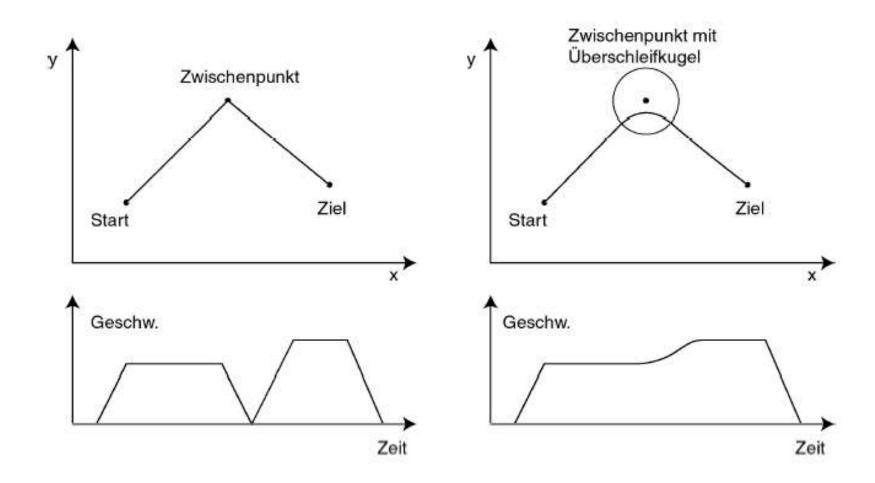


PTP und CP mit Überschleifen (1)



Zum Zeitpunkt $t_j - \varepsilon$ begonnen die Parameter (Richtung und Geschwindigkeit) der Teiltrajektorie j-1 auf die Parameter der Teiltrajektorie j zu überführen. I.d.R. wird der Stützpunkt i nicht erreicht.

PTP und CP mit Überschleifen (2)

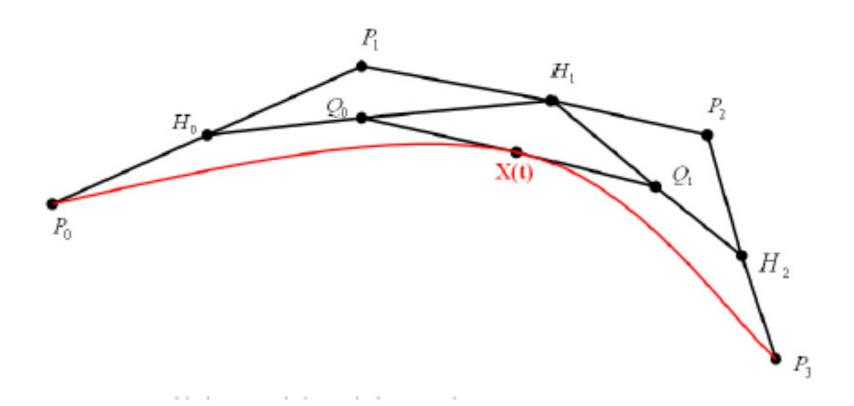


PTP und CP mit Überschleifen (3)

- Geschwindigkeitsüberschleifen
 - Beginn, wenn die Geschwindigkeit einen festgelegten Minimalwert unterschreitet.
 - Nachteil: Abhängig vom Geschwindigkeitsprofil.
- Positionsüberschleifen
 - Beginn, wenn der TCP in die Überschleifkugel eintritt
 - Außerhalb der Überschleifkugel wird die Bahn exakt eingehalten.
 - Vorteil: Gut kontrollierbar

Approximation mit Polynomen

Beispiel: Bernsteinpolynome



Approximierte Bahnsteuerung: Bézierkurven (1)

Im Unterschied zu kubischen Splines verlaufen Bézierkurven nicht durch alle Stützpunkte, sondern werden nur von ihnen beeinflusst.

Basisfunktion:

$$P(t) = \sum_{i=0}^{n} B_{i,n}(t) P_i \quad 0 \le t \le 1$$

$$B_{i,n}(t) = \binom{n}{i} t^i (1-t)^{n-i}$$

 \blacksquare $B_{i,n}(t)$: i-tes Bernsteinpolynom n-ten Grads

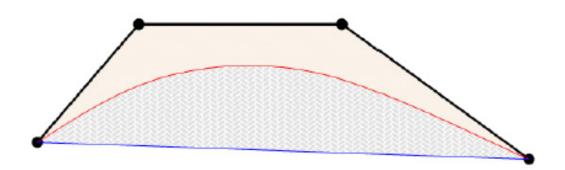
Approximierte Bahnsteuerung: Bézierkurven (2)

- Berechnung beliebiger Zwischenstellungen
- Bernsteinpolynom für kubischen Fall

$$B_{i,3}(t) = {3 \choose i} t^i (1-t)^{3-i}$$

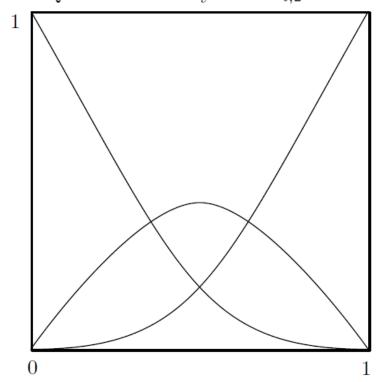
$$p(t) = p_0 (1-t)^3 + 3p_1 (1-t)^2 t + 3p_2 (1-t)t^2 + p_3 t^3$$

- Annähern von unten an Stützstellen
- keine beliebige Form

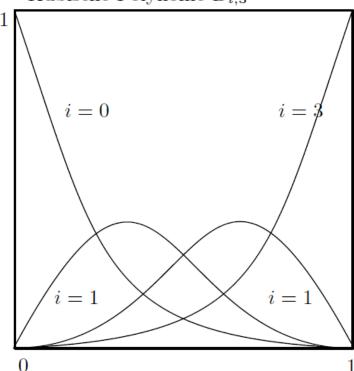


Beispiele für Bernsteinpolynome

Quadratische Polynome $B_{i,2}$



Kubische Polynome $B_{i,3}$



Der De-Casteljau-Algorithmus (1)

- Annäherung an die Bézierkurve: Effiziente Berechnung
 Näherungsdarstellung von Bézierkurven durch einen Polygonzug
- Iterative Berechnung: Kann auch für große n effizient berechnet werden

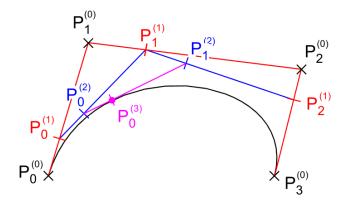
• Gegeben:
$$n$$
 Kontrollpunkte P_0, \dots, P_{n-1}

Start:
$$P_i^0 = P_i$$

Iteration k:
$$P_i^{k+1} = (1 - t_0)P_i^k + t_0P_{i+1}^k$$

Der De-Casteljau-Algorithmus (2)

Beispiel für P_0 mit k=3 und $t_0=0.25$:



- **Table 1** Zwei Bézierkurven $\mathcal{C}_1(t)$ und $\mathcal{C}_2(t)$
- Approximation der Bézierkurve durch Polygonzug

